Очистка поверхностей нагрева

Очистка поверхностей нагрева

Как уже отмечалось неоднократно, работа котла на твердом топливе сопровождается такими нежелательными явлениями, как шлакованием и загрязнением поверхностей нагрева. При высоких температурах частицы золы могут переходить в расплавленное или размягченное состояние. Часть частиц соударяется с трубами экранов или поверхностей нагрева и может налипать на них, накапливаясь в большом количестве.

Шлакование - это процесс интенсивного налипания на поверхности труб и обмуровки частиц золы, находящихся в расплавленном или размягченном состоянии. Образующиеся значительные наросты время от времени отслаиваются от труб и выпадают в нижнюю часть топки. При падении шлаковых наростов возможна деформация или даже разрушение трубной системы и обмуровки топки, а также шлакоудаляющих устройств. Прн высоких температурах упавшие глыбы шлака могут расплавиться и многотонными монолитами заполнить нижнюю часть топки. Подобное зашлаковывание топки требует останова котла и проведения расшлаковочных работ.

Шлакованию подвержены также трубы поверхностей нагрева, расположенные на выходе из топки. В этом случае рост шлаковых отложений приводит к забиванию проходов между трубами и к частичному или полному перекрытию сечения для прохода газов. Частичное перекрытие приводит к возрастанию сопротивления поверхностей нагрева и увеличению мощности дымососов. Если мощности дымососов недостаточно для вывода продуктов сгорания из зашлакованного котла, то необходимо снизить его нагрузку.

Расшлаковывание топки и очистка поверхностей нагрева - длительный и трудоемкий процесс, требующий привлечения значительных людских и материальных ресурсов. На трубах поверхностей нагрева могут оседать также частицы в твердом состоянии, загрязняя их наружную поверхность как с лобовой, так и с тыльной сторон. Эти загрязнения могут образовывать рыхлые или трудноудалимые отложения. Отложения на трубах уменьшают коэффициент теплопередачи (отложения имеют низкую теплопроводность и являются своего рода тепловой изоляцией) и эффективность отдачи теплоты. В результате этого температура уходящих газов возрастает.

Подобно шлакованию, загрязнения поверхностей нагрева котла приводят к увеличению сопротивления его газового тракта и ограничению тяги. При проектировании котельной установки предусматриваются специальные устройства и мероприятия по контролю за состоянием поверхностей нагрева и очистки их от шлака и загрязнений. На остановленных котлах используют преимущественно механические способы очистки с применением различных скребков и водяную обмывку. Регулярно используемый в эксплуатации способ - очистка поверхностей нагрева при помощи паровой или пневматической обдувки, водяной (термоциклической) обмывки, дробе- и виброочистки, а также импульсную очистки.

Обдувка труб 2 топочных экранов или поверхностей нагрева происходит в результате динамического и термического воздействия на слой шлака или загрязнения струи пара или воздуха, вытекающего из сопл 3, расположенных на вращающихся насадках (рис. 92). По отношению к оси насадки сопла расположены под углом 90°, обеспечивающим движение струй вдоль поверхности обдуваемых труб экранов или поверхностей нагрева. При обдувке насадки перемещают вглубь газохода по оси отверстия, выполненного в обмуровке 1, обдувая все змеевики. Для обдувки используется пар давлением 1,3-4 МПа с температурой 450 ’С или сжатый воздух.

В зависимости от назначения и зоны установки применяют обдувочные аппараты невыдвижного (ОН), маловыдвижного (ОМ) и глубоковыдвижного типа (ОГ). Аппараты невыдвижного типа (рис. 93, а) устанавливают в зоне относительно невысокой температуры газов (до 700 °С). Труба I насадки с соплами 2 свободно подвешивается с помощью хомутов 3 к трубам 4 обдуваемой поверхности. При обдувке труба 1 начинает вращаться и одновременно в нее подается пар или сжатый воздух. Корпус аппарата с помощью фланцевых соединений 6 крепится неподвижно к раме 5 каркаса котла. Длина насадки и расстояние между соплами зависят от соответствующих размеров обдуваемой поверхности нагрева.

Очистка поверхностей нагрева с помощью обдвочных аппаратов маловыдвижного типа (рис. 93, б) применяется преимущественно для наружной очистки экранов топки (ОМ-0,35). Обдувку проводят в следующем порядке. Насадка 1 с соплами 2 через резьбовое соединение шпинделя получает от электродвигателя вращательное и поступательное движение. Преобразование вращательного движения в поступательное достигается с помощью направляющей планки с храповым механизмом (закрыт кожухом 7). При полном вводе насадки в топку (ход 350 мм) приводом 8 открывается клапан 9 и обдувочный агент поступает в насадок и сопла. Для обеспечения эффективной обдувки аппараты устанавливают таким образом, чтобы в рабочем положении сопла отстояли от труб на 50-90 мм. По окончании обдувки клапан 9 закрывается лпч |,и насадка выводится из топки.

Количество обдувочных аппаратов, устанавливаемых в топке, выбирают из условия, что радиус действия одиночной обдувочной струи составляет около 3 м. Для очистки фестонов, ширмовых и конвективных пароперегревателей, расположенных в зоне температур газов 700-1000 °С, применяют глубоковыдвижные обдувочные аппараты (рис. 93, в). По принципу действия аппарата они подобны только что рассмотренному типу. Отличие состоит лишь в длине трубы - насадки 1 и ее хода, а также в применении раздельного привода для вращательного и поступательного движения.

При включении аппарата обдувочная труба 1 с соплами 2 приводится в поступательное движение, обеспечиваемое электродвигателем через редуктор 10 и цепную передачу 11. Вращательное движение труба получает от электродвигателя с редуктором 10. При подходе сопл к первым трубам открывается клапан 9 и выходящий из сопл пар начинает обдувать трубы поверхности нагрева. Обдувочный аппарат с помощью специальных передвижных опор 12 крепится к несущей балке (опирается или подвешивается). Совмещением на одной несущей балке двух обдувочных аппаратов (подвесного и опорного) с поступательным движением в противоположных направлениях обеспечивается возможность обдувки сразу двух котлов, т. е. получается аппарат двустороннего действия (типа ОГД).

Очистка поверхностей нагрева при помощи водяной обмывки используется при очистке экранов котлов, работающих на сильношлакующих топливах (сланцы, фрезерный торф, канско-ачинские и другие угли). Разрушение отложений в этом случае достигается в основном под действием внутренних напряжений, возникающих в слое отложений, при периодическом их охлаждении водяными струями, истекающими из сопловых насадков 2 головки 1 (рис. 94, а). Наибольшая интенсивность охлаждения наружного слоя отложений имеет место в первые 0,1 с воздействия водяной струи. Исходя из этого выбирается частота вращения сопловой головки. За цикл обдувки сопловая головка совершает 4-7 оборотов. Сопла располагают обычно в два ряда, на противоположных образующих сопловой головки. Этим обеспечивается равномерное охлаждающее действие струй (различного диаметра) на всей орошаемой водой площади очищаемых прилегающих экранов и необходимое чередование процессов охлаждения и нагрева при вращении головки, в результате чего повышается эффективность очистки.

Обмывку противолежащей и боковых стен производят аппаратом (рис. 94, б), содержащим установленное в шаровом шарнире 3 сопло, в которое подается вода из рукава 4. Сопло совершает подъемно-спускное и горизонтальное движение с помощью привода 5, соединенного с электродвигателем, размещенным на опорной плите 6. Водяная обмывка более эффективна по сравнению с паровой и пневматической обдувками, ее использование не приводит к сильному золовому износу очищаемых труб, так как скорости истечения воды из сопл невысоки. В то же время следует иметь в виду, что при водяной обмывке необходима система защиты, прерывающая подачу воды в аппарат, так как при длительном охлаждении отдельных труб экранов водой вследствие снижения их тепловосприятия может произойти нарушение циркуляции. При водяной обмывке повышается вероятность разрыва экранных труб, испытывающих циклические тепловые нагрузки.

Очистка поверхностей нагрева вибрационным способом применяют преимущественно для очистки ширмовых и конвективных перегревателей. Удаление отложений происходит под действием поперечных или продольных колебаний очищаемых труб, вызываемых специально устанавливаемыми вибраторами электрического (например, С-788) или пневматического типа (ВПН-69).

 

На рис. 95, а показана схема устройства виброочистки ширмового перегревателя с поперечными колебаниями труб. Возбуждаемые вибратором 3 колебания передаются виброштангами 2, соединенными непосредственно с вибратором 3 (рис. 95, а) или через опорную раму 4 (рис. 95, б) и от них змеевикам труб I. Виброштангу1, как правило, приваривают к крайней трубе с помощью полуцилиндрических накладок. Аналогичным образом остальные трубы соединяют между собой и с крайней трубой. Виброочистку с продольным колебанием труб чаще используют для вертикальных змеевиковых поверхностей нагрева, подвешенных (на пружинных подвесках) к каркасу котла (рис. 95, б).

Электрические вибраторы не позволяют повысить частоту колебаний выше 50 Гц, что оказывается недостаточным для разрушения связанных прочных отложений, образующихся на трубах при сжигании канско-ачинских углей, сланцев, фрезерного торфа и др. В этом случае целесообразнее пневматические генераторы колебаний, например ВПН-69. Они обеспечивают частоту колебаний до 1500 Гц и более широкий диапазон ее изменения. Применение мембранных змеевиковых поверхностей значительно упрощает использование вибрационного способа очистки.

Дробевая очистка поверхностей нагрева используется при сжигании мазута и топлив с большим содержанием в золе соединений щелочных (К, Na) и щелочно-земельных (Са, Mg) металлов. На трубах появляются прочносвязанные плотные отложения, удаление которых описанными выше способами невозможно. В случае дробевой очистки на очищаемую поверхность с некоторой высоты падают стальные шарики (дробь) небольшого размера. При падении и соударении с поверхностью дробь разрушает отложения на трубах как с лобовой стороны, так и с тыльной (при отскоке от нижележащих труб) и вместе с небольшой частью золы выпадает в нижней части конвективной шахты. Золу отделяют от дроби в специальных сепараторах, дробь накапливается в бункерах как под очищаемым газоходом, так и над ним.

Основные элементы дробеочистки с нижним расположением бункеров показаны на рис. 96. При включении установки дробь из бункера 1 питателем 2 подается во входное устройство дробепровода 4 (или в инжектор в установках под давлением). Наиболее распространенным способом подъема дроби является пневмотранспорт. Транспортируемая воздухом дробь отделяется в дробеуловителях 5, из которых с помощью тарельчатых питателей 6 распределяется по отдельным разбрасывающим устройствам 7. Дробевые установки с пневмотранспортом дроби работают под разрежением или под давлением. В первом случае воздуходувная машина или эжектор соединены всасывающим патрубком с линией сброса, а во втором воздух из воздуходувки нагнетается через инжектор 3 в линию 4 подъема дроби.

Из трубопровода 1 на полусферические разбрасыватели 2 (рис. 97, а) с определенной высоты падает дробь. Она отскакивает под различными углами и распределяется по очищаемой поверхности. Расположение подводящих трубопроводов и отражателей в зоне высоких температур требуют применения водяного охлаждения. Наряду с полусферическими отражателями применяют пневматические разбрасыватели (рис. 97, б). Их устанавливают на стенах газохода. Дробь из трубы 1 разбрасывается сжатым воздухом или паром, поступающим по подводящему каналу 4 в разгонный участок 3 разбрасывающего устройства. Для увеличения площади обработки изменяют давление воздуха (пара). Одним разбрасывателем могут быть обработаны 13-16 м2 площади при .ширине 3 м. Следует отметить, что удар дроби с поверхностью труб при пневматическом разбрасывании сильнее, чем при использовании полусферических отражателей. В случае интенсивного загрязнения поверхностей нагрева можно комбинировать различные способы очистки.